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Abstract

The J-Machine in concert with its operating system kernel, JOSS, provides low-overhead system
services to support actor programming systems. The J-Machine is not specialized to actor
systems; instead, it provides primitive mechanisms for communication, synchronization, and
translation. Communication mechanisms are provided that permit a node to send a message to
any other node in the machine in < 2us. On message arrival, a task is created and dispatched
in < 1us. A translation mechanism supports a global virtual address space. These mechanisms
efficiently support most proposed models of concurrent computation. The hardware is an
ensemble of up to 65,536 nodes each containing a 36-bit processor, 4K 36-bit words of memory,
and a router. The nodes are connected by a high-speed 3-D mesh network. This design was
chosen to make the most efficient use of available chip and board area.

1 Introduction

Overview

The J-Machine is a distributed-memory, MIMD, concurrent computer. In concert with its
operating system kernel, JOSS, the J-Machine provides low-overhead system services to support
actor programming systems. The combined hardware/software system efficiently implements
two abstractions: object and task. An object is a named collection of data. All data in the
system: program data, code, and contexts are objects. The object namespace is global — an
object can be referenced from any node of the machine. Tasks are procedure activations that
may operate on the state of objects. To support fine-grain concurrent programming systems,
the system is designed to handle small objects (8 words) and small tasks (20 instructions).

The J-Machine is not specialized to actor systems; instead, it provides primitive mechanisms
for communication, synchronization, and translation. Communication mechanisms are provided
that permit a node to send a message to any other node in the machine in < 2us. No processing
resources on intermediate nodes are consumed and buffer memory is automatically allocated on
the receiving node. The synchronization mechanisms schedule and dispatch a task in < 1us on

!The research described in this paper was supported in part by the Defense Advanced Research Projects
Agency under contracts N00014-87-K-0825 and N00014-85-K-0124 and in part by a National Science Foundation
Presidential Young Investigator Award with matching funds from General Electric Corporation and International
Business Machines Corporation.




message arrival and suspend tasks that attempt to reference data that is not yet available. The
translation mechanism maintains bindings between arbitrary names and values. It is used to
perform address translation to support a global virtual address space. These mechanisms have
been selected to be both general and amenable to efficient hardware implementation. They
efficiently support many parallel models of computation including actors{1}, dataflow[17), and
communicating processes(21].

The hardware is an ensemble of up to 65,536 message-driven processors (MDPs)[9]. This limit
is set by the addressability of the router and the bandwidth of the network. Each node contains
a 36-bit processor, 4K 36-bit words of memory, and a communications controller (router). The
nodes are connected by a high-speed, three-dimensional mesh network. Each network channel
has a bandwidth of 450Mbits/s. The first medium-scale prototype will be a 4096-node system.

This design was chosen to make the most efficient use of available chip and board area. Pack-
aging a small amount of memory on each node gives us an extremely high memory bandwidth
(3Gbits/s per chip or 200Tbits/s in a fully populated system). Memory consumes most of the
chip area; from one point of view, the system is a memory with processors added to each node
to improve bandwidth for local operations. The fast communication and global address space
prevent the small local memories from limiting programmability or performance. The 3-D net-
work gives the highest throughput and lowest latency for a given wire density[7]{14]. It allows
the processing nodes to be packed densely and results in uniformly short wires.

The J-Machine project is driven by the following goals:

¢ To identify and implement simple hardware mechanisms for communication, synchro-

nization, and naming suitable for supporting a broad range of concurrent programming
models.

e To reduce the overhead associated with these mechanisms to a few instruction times so
that fine-grain programs may be efficiently executed.

o To design an area-efficient machine: one that maximizes performance for a given amount
of chip and wiring area.

Grain Size

The J-Machine is a fine-grain concurrent computer in that (1) it is designed to efficiently support
fine-grain programs and (2) it is composed of fine-grain processing nodes [15].

The grain size of a program refers to the size of the tasks and messages that make up the
program. Coarse-grain programs have a few long (=~ 10° instruction) tasks, while fine-grain
programs have many short (= 20 instruction) tasks. With more tasks that can execute at a
given time — viz. more concurrency - fine-grain programs (in the absence of overhead) result
in faster solutions than coarse-grain programs.

The grain size of a machine refers to the physical size and the amount of memory in one
processing node. A coarse-grain processing node requires hundreds of chips (several boards)
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and has = 107 bytes of memory while fine-grain node fits on a single chip and has = 10* bytes
of memory. Fine-grain nodes cost less and have less memory than coarse-grain nodes, however,
because so little silicon area is required to build a fast processor, they need not have slower
processors than coarse-grain nodes.

Background

The J-Machine builds on previous work in the design of message-passing and shared memory
machines. Like the Caltech Cosmic Cube [33], the Intel iPSC [23], and the N-CUBE [29], each
node of the J-Machine has a local memory and communicates with other nodes by passing
messages. Because of its low overhead, the J-Machine can exploit concurrency at a much finer
grain than these early message passing computers. Delivering a message and dispatching a
task in response to the message arrival takes < 3us on the J-Machine as opposed to 5ms on
an iPSC. Like the BBN Butterfly (4] and the IBM RP3 [30] the J-Machine provides a global
virtual address space. The same IDs (virtual addresses) are used to reference on and off node
objects. Like the INMOS transputer [22] and the Caltech MOSAIC [27] a J-Machine node is a
single chip processing element integrating a processor, memory, and a communication unit.

The J-Machine is unique in that it extends these previous efforts with efficient primitive mech-
anisms for communication, synchronization and naming.

Summary

The remainder of this paper describes the J-Machine and the JOSS operating system kernel.
Section 2 gives an overview of the system describing how the network, processor, and operating
system layers work together to provide services. The network is described in Section 3. The
topology, performance, and router design are discussed. Section 4 deals with the message
driven processor and the mechanisms it provides for concurrency. The operating system is
briefly described in Section 5.

2 System Architecture

The J-Machine system is layered as shown in Figure 1. A hardware layer provides primitive
mechanisms. A software layer, the JOSS kernel, uses these primitives to build system services T
in two stages. First, local services are provided on each node. Second, global services are built
on top of these local services by passing messages between the nodes.
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Figure 1: The J-Machine System. The hardware layer consists of a number of MDPs connected
by a network. The operating system kernel running on each node provides local services. Global
services are provided by exchanging messages with other nodes.

Each node contains a memory, a processor, and a communication controller. The communica-
tion controller is logically part of the network but physically part of the node. The 4K-word by
36-bit memory is used to store objects and system tables. Each word of the memory contains
a 32-bit data item and a 4-bit tag. In addition to the usual uses of tags to support dynamic
typing and garbage collection, special tags are provided to synchronize on data presence and to
indicate if an address is local or remote. Memory accesses to write messages or read code are
made a row (144bits) at a time to improve memory bandwidth. A part of the memory can be
mapped as a set associative cache. This cache is used to implement the processor’s translation
mechanism.

The processor is message driven. It executes user and system code in response to messages
arriving over the network. A conventional processor is instruction-driven in that it fetches
an instruction from memory and dispatches a control sequence to execute the instruction. A
message-driven processor receives a message from the network and dispatches a control sequence
to execute the task specified by the message. The MDP uses an instruction sequence to ezecute
a message. Hardware mechanisms for communication, synchronization, and translation are
provided to accelerate the dispatch operation and the subsequent task execution.

To support communication over the network, the MDP provides a SEND instruction and performs
automatic buffering of arriving messages. To synchronize execution with arriving messages, a
primitive dispatch operation is provided that eliminates scheduling overhead. To synchronize
on data, tags are provided to support futures. A general translation mechanism uses a set
associative cache in the node memory to maintain arbitrary bindings.

The software layer is implemented by the JOSS kernel [36] which provides services for allocating
memory and processor resources to objects and tasks. The first level of JOSS provides memory
management and multitasking on each node independently. Objects are allocated locally as
memory segments and assigned a unique name. A binding is maintained between the object
name (its ID or virtual address) and the base and length of its segment. Each node allocates




names from a different partition of the global name space so the local object name is also its
global name.

The second level of JOSS extends services globally acroes the network. A distributed global
name table is maintained that contains bindings of object names to node addresses (node
numbers). Remote objects are referenced by translating the object name to a node number and
sending a message containing the object name to the node. At the node, the name is translated
into a local segment descriptor. Objects are free to migrate from node to node. The global
name table keeps track of the object’s current location.

To handle large objects, JOSS provides support for distributed objects [5). A distributed object is
a collection of objects distributed over many nodes that share a common name. JOSS translates
distributed object names to the location of the nearest constituent object.

The JOSS task manager schedules tasks in response to message arrival. It makes heavy use of
the MDP synchronization mechanisms. The MDP dispatch mechanism is used to create tasks
in response to message arrival. Tasks that terminate without suspending require no further
services. If a task suspends awaiting a message, a context object is created to hold its state.
When the message to restart the task arrives, its context is reloaded to resume the task.

To see how the system functions together, consider the example shown in Figure 2. In Figure 2a,
A task executing in Context 37 on Node 124 sends a Sum message to an object, pointi. This
message requests that the object sum its two fields x and y. The sending node translates the
object name for pointi (a unique 32-bit pattern) into a node address, Node 262 (a 16-bit
integer), using the MDP translation mechanism. A sequence of MDP SEND instructions is then
used to inject the message into the network. The message includes (1) the node address of
pointi (Node 262), (2) the object name of point1, (3) the message name or selector, Sum, and
(4) a continuation (the node and ID of the sender’s context and the slot into which the reply
should be stored). The sending task continues to execute until it needs the result of the Sum
message.

The network delivers the injected message to Node 262. At this node, the MDP buffering
mechanism allocates storage for the message and sequences the message off the network into
the node’s memory. When the node completes its current task (and any other tasks ahead in
the queue), the MDP dispatch mechanism creates a new task in response to the message. This
task translates the ID of point1 into a segment descriptor for the object, adds the x and y fields
of the object together, and uses a sequence of SEND instructions to inject a message containing
the sum into the network. As shown in Figure 2b, this message contains (1) the node address
of the sender’s context, (2) the ID of the sender’s context, (3) the context slot awaiting the
reply, and (4) the result. This task then terminates.

The network delivers the reply message to Node 124 where it is buffered and eventually dis-
patched to create a task. This task translates the ID for Context 37 into a segment descriptor.
The reply value is stored into the specified slot of this context. The sending task is then resumed
by loading its context from this segment.

The round trip delay for this example message send and reply is = 5us. The difficulty in building
a concurrent system the scale of the J-machine is not developing the mechanisms conceptually.
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Figure 2: (a) A task executing in Context 37 on Node 124 sends a message to object pointi
requesting that it perform the Sum method. (b) A reply message is returned to Context 37.
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Figure 3: The J-Machine Network is a 3-D mesh or k-ary 3-cube (a 3% 33 mesh is shown here).
Messages injected into the network at any node are routed to the destination node specified in
the head of the message. All routing and flow control is performed in the network.

It is implementing them efficiently so the overhead of accessing remote nodes is made small
enough to permit the execution of fine-grain programs.

In the following sections we will examine the implementation of each component of the J-
Machine system.

3 The Network

The J-Machine network has a 3-D mesh topology as shown in Figure 3. Each node is located by
a three coordinate address (x, y, and z). A node is connected to its six neighbors (if they exist)
that have addresses differing in only one coordinate by £1. All connections are bidirectional
channels. Each channel requires 15 wires to carry 9-data bits, one tail bit, and five control lines
[10]. Addressing is provided to support up to a 32 x 32 x 64 cube of 65536 nodes. The prototype
will be built as a 16 x 16 x 16 cube of 4096 nodes. For a machine, such as the J-Machine where
wire density is a limiting factor, this topology has been shown to give the lowest latency and
highest throughput for a given wire density [7]{14].

The network topology is not visible to the programmer. The latency of sending a message from
any node, i, to any other node, j, is sufficiently low that the programmer sees the network as
a complete connection. Zero load network latency is given by
T=TiD+Tn (1
=Ty W )
Where D is the distance (number of hops) the message must travel, L is the length of the
message in bits, and W is the width of the channel in bits. The network is expected to have a

propagation delay per stage, T4, of 20ns and a channel cycle time, T, of 20ns. With these times,
a six word (L =216 bit) message traversing half the network diameter (D = 24) has a latency of
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Figure 4: The J-Machine Network performs e-cube or destination tag routing. Messages are
routed in each dimension in turn to the proper coordinate in that dimension. In this figure a
message is routed from (1,5,2) to (5,1,4) routing first in x, then y, then z.

960ns equally divided between the two components of latency [14]. An average message travels
one third of the network diameter for a latency of 800ns.

The network provides all end to end message delivery services. The sending node injects a
message containing the absolute address of the destination node. The network determines the
route of the message, and sequences each flit (flow-control digit) of the message over the route.
Flow control is performed as required to resolve contention and match channel rates.

There is no acknowledgement, error detection, or error correction on the network channels.
The network wires are all short, contained within a single physical cabinet, and operated at low
impedance. The error rate of a network channel is no higher than that of a properly terminated
signal in a conventional CPU.

The J-Machine network uses e-cube routing, a deterministic routing algorithm. Messages are
routed one dimension at a time as illustrated in Figure 4. At the sending node, the source ad-
dress is subtracted from the absolute destination address to yield a relative destination address.
The three coordinates of the relative destination address are contained in the three leading flits
of the message. Routing is performed according to the relative address one coordinate at a
time. After each hop the leading coordinate is adjusted to reflect the current position of the
head of the message. When this coordinate reaches zero, routing is complete in that dimension.
The coordinate is then stripped off and routing begins in the next dimension.

In Figure 4, the relative address is (4,-4,2). The message is first routed four hops in the positive
x direction. When the relative address reaches (0,-4,2) at node (5,5,2) the message is at the
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Figure 5: The J-Machine Network performs blocking flow control with four stages of queueing
per node. (a) Message arrives at busy channel. (b) Message becomes compressed by queueing.
(c) Channel is available; message continues advancing.

proper x coordinate. The x address is stripped off the message header and the message is routed
four hops in the negative y direction to bring it to the proper y coordinate at (5,1,2). Two hops
in the positive z direction brings the message to its destination.

To support system services operating at different priorities, two logical networks are provided,
one for each priority level. The two logical networks have completely separate buffers and
control state, but share the same set of physical channels between nodes. Each level does
see the presence of the other except when performance degrades because a physical channel is
being shared. If one network becomes completely congested, the other network still functions
normally {10].

The network performs blocking flow control to resolve contention as shown in Figure 5. When
a message requires use of a channel that is busy, it is blocked. The head of the message stops
and begins filling the current channel’s four-stage queue. When the four stages of queuing
are full, the blockage propagates back to the preceding channel. Finally, when the channel
becomes available, the message continues to advance toward its destination. This flow control
is performed in a manner that is provably deadlock free[8).

While logical channels are allocated on a message by message basis, the bidirectional wires
between two nodes (shared by four logical channels) are allocated to messages at different
priorities and/or traveling in opposite directions on a flit-by-flit basis. Thus contention for the
bidirectional channel slows messages without blocking them.

The internal structure of a network router is illustrated in Figure 6. The router consists of
three levels. At the highest level, two completely separate priority routers interact only by
competing for access to the physical communication channel (Figure 6a). Each priority consists
of six dimension routers that handle routing in the positive and negative x,y, and z dimensions
(Figure 6b). As described above, a message routes in a single dimension until it reaches the
proper coordinate. The message then enters the next dimension in sequence.
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Figure 6: Block diagram of a router. (a) The two priorities are completely separate except
where they share the physical channels. (b) Each priority contains three dimension data paths.
(c) Each dimension data path performs switching and flow control for one dimension of routing.

10




IDOUDDOODDDDDUI‘INDDDD:Q

CooooooocoDOoO0O0OOO0O0OO0O0OGO

B~

Figure 7: Photomicrograph of the network design frame, a prototype of the J-Machine router.

Each dimension router (Figure 6c)consists of an input switch, a zero checker, a decrementer,
and an output controller. Messages entering the dimension compete with messages continuing
in the dimension at a 2 to 1 switch. Once one message is granted this switch, the other input
is locked out for the duration of the message. Once a message passes the input switch, it is
zero checked and its head (routing) flit is decremented. If the head flit is non-zero the message
continues in the current direction. Otherwise the head flit is stripped and the message is routed
to the next dimension. Small (four flit) output buffers are provided on both outputs. Once
the head flit of the message has set up the route, subsequent flits follow from the input switch
directly to the output buffer, bypassing the decrementer. Figure 7 shows a prototype routing
chip that implements two dimensions of the logic shown in Figure 6.

The routers are completely self-timed. There is no global clock. Arbiters are used at all switches
where two event streams merge to avoid synchronization errors.

4 The Message-Driven Processor

The message-driven processor (MDP) is a 36-bit single-chip microcomputer specialized to op-
erate efficiently in a multicomputer. [9][13]. The MDP chip includes the processor, a 4K-word
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Figure 8: The Message-Driven Processor chip incorporates a 36-bit processor, a 4K-word x
36-bit memory, and a router (described above).

by 36-bit memory, and a router (Figure 8). An on-chip memory controller with ECC permits
local memory to be expanded up to 1M-words by adding external DRAM chips.

Other machines have combined processor, memory, and communications on a single chip [22} [27]
{29]. The MDP extends this work by providing fast, primitive mechanisms for synchronization,
communication, and translation (naming) that allow the processor to efficiently support many
parallel models of computation. A fast network is of little use if very large overheads are
required to initiate and receive messages at the processing nodes. The MDP’s mechanisms
reduce the overhead of interacting with other processors over the network to levels that make
fine-grain parallelism efficient.

The following mechanisms are provided:

¢ Communication Mechanisms

— A SEND instruction injects messages into the network.

— Messages arriving from the network are automatically buffered in a circular queue,
¢ Synchronization Mechanisms

— A dispatch mechanism creates and schedules a task (thread of control and addressing
environment) to handle each arriving message.

— Tags for futures [19] synchronize tasks based on data dependencies.

¢ Translation

~ ENTER and XLATE (translate) instructions make bindings between arbitrary 36-bit key
and data values (ENTER) and retrieve a value given the corresponding key (XLATE).

— Segmented memory management provides relocation and protection for data objects
stored in a node’s memory.

12
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Figure 9: The MDP machine state contains three register sets, one for each of two message
priorities and one for background execution.

The processor is message driven in the sense that processing is performed in response to mes-
sages (via the dispatch mechanism). There is no receive instruction. A task is created for each

arriving message to handle that message. A computation is advanced (driven) by the messages
carrying tasks about the network.

4.1 User Architecture

This section gives a brief overview of the user architecture. For a complete description, the user
should consult [13].

Processor State

Figure 9 shows the register set of the MDP. There are three copies of most registers. One copy
holds the state of the task being executed in response to the most recent priority zero message,
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Figure 10: The MDP instruction format. Instructions are three address with two of the operands
restricted to the general registers.

a second set handles priority one tasks, and the third set holds the state of the background task
that executes when the node is awaiting a message. The three register sets enable the MDP to
task switch between priorities without saving or restoring state.

Each priority contains four general registers, RO-R3, that can be used to hold arbitrary data.
The register set is kept small to minimize the time required to save state when suspending a
task. Also, the on-chip memory can be accessed in a single clock cycle. Fast local memory
eliminates many of the advantages of large register sets.

Four segment registers, A0-A3, hold segment descriptors for the current addressing environment
of a task. Each descriptor contains the base of the segment in local memory and its length.
If the i-bit of a descriptor is set, the segment is invalid. The r-bit indicates if the segment
is relocatable. The i and r bits are used to invalidate relocatable segments when the heap is
compacted. The four ID registers, ID0-ID3, hold the names (virtual addresses) of the segments.
The MDP translation mechanism is used to convert segment names into segment descriptors.

The instruction pointer, IP, locates the current instruction in the code segment (A0). Included
in the IP are three status bits, U, F, and A . If the U (unchecked) bit is set, no type checking
is performed. The F bit indicates when the machine can handle faults. A fault occuring when
the F bit is set results in an unrecoverable double fault. If the A (absolute) bit is set, the IP is
used as an absolute address and not as an offset into the code segment. These bits are included
in the IP so the control state of the machine can be saved or restored by storing or loading a
single register.

The FIP, FIR, and FOP registers are used for fault handling. When a fault or system call occurs,
these registers are loaded from the current machine state. The fault handler examines the
registers to correct the fault and returns from the fault by moving FIP into IP.

The QBM and QHL registers determine the memory allocated to the message queue, and the

current state of the queue. The TBM register determines the memory allocated to the translation
buffer.

Instruction Set

The MDP uses three address instructions as shown in Figure 10. Two of the operands are
restricted to be general registers (R0O-R3). The remaining operand can be any register, or a
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memory location specified by a displacement or index into one of the segments. This instruction
format was selected to give good code density ~ important with a small local memory - while
permitting efficient access to variables stored in memory.

A synopsis of the instruction set is shown in Figure 11. In addition to the usual instructions for
data movement, arithmetic, and control, the MDP provides instructions for sending messages
over the network and for performing associative translations. If the U bit is clear, all instructions
are type checked, the figure shows the admissible types for each instruction. This run-time type
checking in combination with fast fault handling efficiently supports both dynamic typing and
suspension of tasks when undetermined futures are touched.

4.2 Send Instruction

The MDP injects messages into the network using a send instruction that transmits one or two
words (at most one from memory) and optionally terminates the message. The first word of
the message is interpreted by the network as an absolute node address (in x,y format) and is
stripped off before delivery. The remainder of the message is transmitted without modification.
A typical message send is shown in Figure 12. The first instruction sends the absolute address
of the destination node (contained in R0). The second instruction sends two words of data
(from R1 and R2). The final instruction sends two additional words of data, one from R3, and
one from memory. The use of the SENDE instruction marks the end of the message and causes
it to be transmitted into the network. In a Concurrent Smalltalk message [16], the first word is
a message header, the second specifies the receiver, the third word is the selector, subsequent
words contain arguments, and the final word is a continuation. This sequence executes in 4
clock cycles (200ns).

A first-in-first-out (FIFO) buffer is used to match the speed of message transmission to the
network as shown in Figure 13. In some cases, the MDP cannot send message words as fast as
the network can transmit them. Without a buffer, bubbles (absence of words) would be injected
into the network pipeline degrading performance. The SEND instruction loads one or two words
into the buffer. When the message is complete or the eight-word buffer is full, the contents of
the buffer are launched into the network.

Early in the design of the MDP we considered making a message send a single instruction that
took a message template, filled in the template using the current addressing environment, and
transmitted the message. Each template entry specified one word of the message as being either
a constant, the contents of a data register, or a memory reference offset from an address register
(like an operand descriptor). The template approach was abandoned in favor of the simpler one
or two operand SEND instruction because the template did not significantly reduce code space
or execution time. A two operand SEND instruction results in code that is nearly as dense as a
template and can be implemented using the same control logic used for arithmetic and logical
instructions.

Previous concurrent computers have used direct-memory access (DMA) or I/ O channels to inject
messages into the network. First an instruction sequence composed a message in memory. DMA
registers or channel command words were then set up to initiate sending. Finally, the DMA
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Mnemonic Operands Name
General Movement and Type Instructions

READ Src,Rd Move Word
WRITE Rs,Dst Move Word
READR Src,Rd Read Register
WRITER Rs,Dst Wrhke Register
RTAG Sre,Ad Read Teg

WTAG Rs,Src,Rd  Wrke Tag

Low Sre Load

LOPR Sre Load WP from Register
CHECK Rs,Stc,Ad  Check Tag
Arithmetic and Logic Instructions

CARRY Rs,Src,Rd  Carry trom Add
ADD Rs,Src,Rd  Add

sus Rs,Src,Rd  Subtract

MULH Rs.Src,Rd  Multiply High
MUL Rs.Src,Rd  Muhiply

ASH Rs,Sre,Rd  Arithmetic Shilt
LSH Rs.Src,ARd  Logical Shift

ROT Rs,Stc,Rd  Rotate

AND Rs.Sric,Rd  And

OR Re,Src, R Or

XOR R, Src,Rd  Xor

FFB Src.Rd Find Fiest Bl
NOT Sre,Rd Not

NEG Src,Rd Negate

(8] Rs,Src,Rd  Less Than

LE Rs,Src,Rd  Less Than or Equal
GE Rs,Src,Rd  Greater Than or Equal
GT Rs.Src,ARd  Grester Than
EQUAL Rs,Src,Rd  Equal

NEQUAL Rs,Src,Rd  Not Equal

EQ Rs.Src,Rd  Pointer Equal
NEQ Rs,Src,Rd  Pointer not Equal
Network Instructions

SEND Sre,P Send

SENOE Src,P Send and End
SEND2 Src,Rs.P Send 2

SEND2E Src,Rs,P Send 2 and End
Associative Lookup Tabie Instructions

XLATE Rs,D81,C Associative Lookup
ENTER Sre,Rs Associstive Enter
PROBE Rs,.Dst Probe Associative Cache
Special Instructions

NOP NOP

INVAL invalidate
SUSPEND Suspend

CALL Src System Call
Branches

BA Sre Branch

BNIL Rs,Sre Branch I NiL
BNNL Rs,Src Branch ¥ Non-NIL
BF Rs,Stc Branch Il False
BT Rs,Src Branch I True

74 Rse,Stc Branch il Zero
"4 Rs,Src Branch § NonZero

Figure 11: The MDP instruction set. Instructions are included to inject messages into the

network and to enter and retrieve translations.
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SEND RO ; send net address
SEND2 Ri,R2 ; header and receiver
SEND2E R3,{3,A3] ; selector and continuation - end msg.

Figure 12: MDP assembly code to send a 4 word message uses three variants of the SEND
instruction.

Send Opil Op0

To
—* Network

Fifo Buffer
Figure 13: A FIFO buffer is used to match network speed. The SEND instruction loads message
words into the buffer. When the message is complete or the buffer is full, the message is
launched.
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controller transferred the words from the memory into the network. This approach to message
sending is too slow for two reasons. First, the entire message must be transferred across the
memory interface twice, once to compose it in memory and a second time to transfer it into
the network. Second, for very short messages, the time required to set up the DMA control
registers or I/O channe! command words often exceeds the time to simply send the message
into the network.

4.3 Message Reception

The MDP maintains two message/scheduling queues (one for each priority level) in its on-chip
memory. The queues are implemented as circular buffers. As shown in Figure 14a, the QBM
(queue base and mask) register determines the location of this queue. The QHL (queue head
and length) register holds the present state of the queue.

As messages arrive over the network, they are buffered in-the appropriate queue. To improve
memory bandwidth, messages are enqueued by rows (Figure 14b). Incoming message words
are accumulated in a row buffer until the row buffer is filled or the message is complete. The
row buffer is then written to memory. The head and length fields of the QHL register are added
together to form the address of the queue tail and this address is wrapped by masking with the
QBM register as shown in Figure 14c. After the row is written, the queue length is incremented
by four.

It is important that the queue have sufficient performance to accept words from the network at
the same rate at which they arrive. Otherwise, messages would backup into the network causing
congestion. The queue row buffers in combination with hardware update of queue pointers allow
enqueuing to proceed using one memory cycle for each four words received. Thus a program
can execute in parallel with message reception with little loss of memory bandwidth.

Providing hardware support for allocation of memory in a circular buffer on a multicomputer is
analogous to the support provided for allocation of memory in push-down stacks on a unipro-
cessor. Each message stored in the MDP message queue represents a method activation much
as each stack frame allocated on a push-down stack represents a procedure activation.

An alternative queue organization, considered early in the MDP project, allocated storage from
the heap for each incoming message. This eliminated the need to copy messages when a method
suspended for intermediate results. However, the cost of allocating and reclaiming storage for
each message proved to be prohibitive. Instead, we settled on the preallocated circular buffer.
When a method suspends for intermediate results, message arguments are copied into a context
object. The overhead of this copying is small since the context must be created anyway to specify
a continuation and to hold live variables. The fixed buffer also provides a convenient layering.
Priority zero messages are sent when the memory allocator runs out of room and priority one
messages are sent when the priority zero queue fills.
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(A)

F 3
Nr:t::or l [ I
3144
(B)
Memory
Queue
AddressI
M,
1
(C) Memory
B Address
QBM

Figure 14: Message reception: (a) The QBM and QHL registers maintain a circular buffer message
gueue in local memory for each priority level. (b) Messages are enqueued a row (4-words) at a
time to improve memory bandwidth. (c) Addresses are wrapped by masking with QBM.
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Segment Message Queue
Descriptor

1

QH—1 B

L R

message=process

IP

Figure 15: Message dispatch. In one clock cycle, a new task is created by (1) setting the
IP to change the thread of control and (2) creating a message segment to provide the initial
addressing environment.

4.4 Dispatch

Each message in the queues of an MDP represents a task that is ready to run. When the
message reaches the head of the queue, a task is created to handle the message. At any
time, the MDP is executing the task associated with the first message in the highest priority
non-empty queue. If both queues are empty, the MDP is idle — viz., executing a background
task. Sending a message implicitly schedules a task on the destination node. This simple
two-priority scheduling mechanism removes the overhead associated with a software scheduler.
More sophisticated scheduling policies may be implemented on top of this substrate.

Messages become active either by arriving while the node is idle or executing at a lower priority,
or by being at the head of a queue when the preceding message suspends execution. When a
message becomes active a task is created to handle it. Task creation, changing the thread of
control and creating a new addressing environment, are performed in one clock cycle as shown
in Figure 15. Every message header contains a message opcode and the message length. The
message opcode is loaded into the IP to start a new thread of control. The length field is used
along with the queue head to create a message segment descriptor in A3 that represents the
initial addressing environment for the task. The message handler code may open additional
segments by translating object IDs in the message into segment descriptors.

No state is saved when a task is created. If a task is preempting lower priority execution, it
executes in a separate set of registers. If a task, A, becomes active when an earlier task, B, at
the same priority suspends, B is responsible for saving its live state before suspending.
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MOVE [1,A31,R0 ; get method id
XLATE RO,AO ; translate to segment descriptor
LDIP INITIAL_IP ; transfer control to method

Figure 16: MDP assembly code for the CALL message.

The dispatch mechanism is used directly to process messages requiring low latency (e.g., com-
bining and forwarding). Other messages (e.g., remote procedure call) specify a handler that
locates the required method (using the translation mechanism described below) and then trans-
fers control to it.

For example, a remote procedure call message is handled by the call handler code as shown
in Figure 16. The execution of this handler is depicted in Figure 17. The first instruction
gets the method ID (offset 1 into the message segment reference by A3). The next instruction
translates this method ID into a segment descriptor for the method and places this descriptor
in AO. If the translate faults, because the method is not resident or the descriptor is not in
the translation cache, the fault handler fizes the problem and reschedules the message. If the
translation succeeds, the final instruction transfers control to the method. The method code
may then read in arguments from the message queue. The argument object identifiers are
translated to physical memory base/length pairs using the translate instruction. If the method
needs space to store local state, it may create a context object. When the method has finished
execution, or when it needs to wait for a reply, it executes a SUSPEND instruction passing control
to the next message.

An early version of the MDP had a fixed set of message handlers in microcode. An analysis of
these handlers showed that their performance was limited by memory accesses. Thus there was
little advantage in using microcode. The microcode was eliminated, the handlers were recoded in
assembly language, and the message opcode was defined to be the physical address of the handler
routine. Frequently used handlers are contained in an on-chip ROM. This approach simplifies
the control structure of the machine and gives us flexibility to redefine message handlers to fix
bugs, for instrumentation (e.g., to count the number of sends), and to implement new message
types.

4.5 Synchronization with Tags

Every register and memory location in the MDP includes a 4-bit tag that indicates the type
of data occupying the location. The MDP uses tags for synchronization on data availability in
addition to their conventional uses for dynamic typing and run-time type checking. Two tags
are provided for synchronization: future, and c-future. A future tag is used to identify a
named placeholder for data that is not yet available (19]. Applying a strict operator to a future
causes a fault. A future can, however, be copied without faulting. A c-future tag identifies a
cell awaiting data. Applying any operator to a c-future causes a fault. As they are unnamed
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Message
Call
\ Routine
| Call [Meth-ID] Arg-1D | |
Argument
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Xlate ) { Xlate S
|
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o] Code
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Figure 17: The CALL message invokes a method by tré.nsla.ting the method identifier to find the
code, creating a context (if necessary) to hold local state, and translating argument identifiers
to locate arguments.
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placeholders, they cannot be copied.

The c-future tag is used to suspend a task if it attempts to access data that has not yet
arrived from a remote node. When a task sends a message requesting a reply, it marks the
cell that will hold the reply as a c-future. Any attempt to reference the reply before it is
available will fault and suspend the task. When the reply arrives, it overwrites the c-future
and resumes the task if it was suspended. For example, when the task executing in Context
37 in Figure 2 sends the Sum message, it marks Slot 3 of its context as a c-future. The reply
message overwrites Slot 3 to indicate data presence.

The future tag is used to implement named futures as in Multilisp [19]. Futures are more
general than c-futures in that they can be copied. However, they are much more expensive
than c-futures. A memory area and a name must be allocated for each future generated.

4.6 Translation

The MDP is an experiment in unifying shared-memory and message-passing parallel computers.
Shared-memory machines provide a uniform global name space (address space) that allows
processing elements to access data regardless of its location. Message-passing machines perform
communication and synchronization via node-to-node messages. These two concepts are not
mutually exclusive. The MDP provides a virtual addressing mechanism intended to support a
global name space while using an execution mechanism based on message passing.

The MDP implements a global virtual address space using a general translation mechanism.
The MDP memory allows both indexed and set-associative access. By building comparators
into the column multiplexer of the on-chip RAM, we are able to provide set-associative access
with only a small increase in the size of the RAM’s peripheral circuitry.

The translation mechanism is exposed to the programmer with the ENTER and XLATE instruc-
tions. ENTER Ra,Rb associates the contents of Ra (the key) with the contents of Rb (the data).
The association is made on the full 36 bits of the key so that tags may be used to distinguish
different keys. XLATE Ra,Ab looks up the data associated with the contents of Ra and stores
this data in Ab. The instruction faults if the lookup misses or if the data is not a segment
descriptor. XLATE Ra,Rb can be used to lookup other types of data. This mechanism is used by
our system code to cache ID to segment descriptor (virtual to physical) translations, to cache
ID to node number (virtual to physical) translations, and to cache class/selector to segment
descriptor (method lookup) translations.

Tags are an integral part of our addressing mechanism. An ID may translate into a segment
descriptor for a local object, or a node address for a global object. The tag allows us to
distinguish these two cases and a fault provides an efficient mechanism for the test. Tags also
allow us to distinguish an ID key from a class/selector key with the same bit pattern.

Most computers provide a set associative cache to accelerate translations. We have taken this
mechanism and exposed it in a pair of instructions that a systems programmer can use for
any translation. Providing this general mechanism gives us the freedom to experiment with
different address translation mechanisms and different uses of translation. We pay very little
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Figure 18: MDP block diagram.

for this flexibility since performance is limited by the number of memory accesses that must be

performed.

4.7 Micro Architecture

The MDP consists of eight major subsystems as shown in Figure 18.

e Control and Prefetch The controller interprets an instruction sequence and monitors
the state of the queues and network to generate state sequences that control the operation

of the remaining blocks.

¢ RALU The general registers and ALU. The standard arithmetic, logical and comparison
instructions are performed in this block.

e AAU The address arithmetic unit generates all memory addresses for data read and
write, instruction fetches, network enqueuing, and task dispatch.

e Memory The memory block is a 4K x 36-bit static read/write memory. It includes input
row buffers for enqueuing network data, one output row buffer for reading instructions,
and comparators for implementing set associative access.
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Figure 19: Photomicrograph of an MDP memory test chip.

¢ External Memory Interface This subsystem generates timing signals, multiplexed
addresses, and error detection and correction to interface standard dynamic memory
components to the MDP.

¢ Network Input The network input module accepts asynchronous data from the network,
formats the 9-bit flits into 36-bit words, assembles words into the queue row buffers, and
signals the control module to run an enqueue cycle to write the row buffer to memory.

e Network Output The network output contains a FIFO send buffer, and logic to sequence
messages into the asynchronous network. This unit also subtracts the node address from
the message header to convert absolute message addresses into relative addresses.

¢ Router The router is described in Section 3. It handles routing and flow control to deliver
messages across the network.

An MDP memory test chip was implemented to test the feasibility of implementing row buffers
and comparators in the peripheral circuitry of a memory[20]. The chip, shown in Figure 19, is a
1K-word x 37-bit (36 + parity) dynamic read/write memory organized as 256 rows of 148 bits.
It is implemented in a 2u double-metal CMOS technology. The circuitry at the bottom of the
memory array includes one row buffer and the comparator and muitiplexer circuitry required
for set-associative access. This circuitry requires less than 10% of the total array area.
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5 The Jellybean Operating System

JOSS is an operating system for the J-Machine that is designed to efficiently support fine-
grain concurrent computation where tasks are very short (20 instructions), and data objects
are very small (8 words) [36]. It is also tailored for an environment where local computation is
inexpensive. Communication bandwidth and memory capacity are the limiting resources.

JOSS consists of a collection of system calls, fault handlers, message handlers, and remote-
procedure call (RPC) code. System calls and fault handlers are similar to their counterparts in
sequential systems. A message handler is a physically addressed system routine that is executed
each time a particular type of message is received.

5.1 Abstractions

All JOSS abstractions are constructed from objects. System objects that are handled specially
include the following:

o A Method is an object containing code. The system performs hierarchical distribution of
methods and caches methods locally on each node.

o A Contezt is an object containing the state of a task. The system provides special al-
location and deallocation of contexts to speed task creation and provides services for
suspending and resuming contexts.

e A Class is an object that defines the properties of a specific class (or type) of object.

All computation takes place by sending messages between objects. Consider, for example,
sending the message increment to the object counter. The class of counter is accessed to
look up a method to be executed in response to an increment message. A task is then created
to execute the code in this method. If the task must suspend its execution to await a message,
it saves its state in a contezt object before relinquishing the processor.

5.2 Global Object Namespace

Most message-passing multicomputers have a separate memory address space on each node.
Nodes interact only by sending messages between processes {35]. A partitioned address space
makes it difficult to construct distributed data structures (5], limits the size of a processes
address space to the memory size of a node, and requires entire processes to be relocated to
balance memory use. Also, because storage on remote nodes cannot be directly accessed, these
machines replicate the operating system and application code on each node.

JOSS overcomes these limitations by providing a global object namespace. All data and code
are stored in objects. Each object is assigned a unique global ID. Given an object ID, a task
on any node can reference the corresponding object. Objects are free to migrate between
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nodes. Accesses to objects are bounds checked and protected. The system supports distributed
objects [16]. Large distributed objects are implemented as a collection of small constituent
objects accessed via a single ID. A one to many translation service prevents the single ID from
becoming a bottleneck.

A global object namespace provides many of the advantages of a shared memory multicomputer
while retaining the scalability of a message-passing machine. Distributed data structures are
easily constructed by linking together objects on different nodes using IDs. Processes have an
address space limited only by the size of an ID. Also, code need not be replicated on each node
since it can be referenced through its ID.

To support this global object space, JOSS provides (1) services to allocate and deallocate
objects, and (2) services to translate object names (IDs) into object locations. Both functions
are layered with one component providing the service locally within a node and a second
component extending the service across the network.

Objects are created locally by allocating a contiguous region of memory off the top of the heap
and assigning a unique name (ID) to the object. The global ID space is partitioned so that
nodes may assign unique global IDs autonomously. Object creation is extended across the
network by providing a NEW message that creates an object of a specified class on a remote node
and returns its ID.

Objects are deleted by marking. Their storage is reclaimed by a compactor that copies objects
down in memory to fill unused holes. As segments are relocated during compaction, the local
translation table is updated and all segment registers are invalidated. Compaction is very fast
because local memory is small and fast and because the operation is completely local - no
communrication is required.

Given an object ID, an object is located in two steps. First, a distributed global name table is
accessed to find the node on which the object is resident. A message is then sent to the node
where the ID is translated into a segment descriptor for the object. The segment descriptor for
an object is strictly local information. Thus, each node may relocate objects locally without
interacting with any other nodes.

Accessing the global name table involves a message send. To avoid this indirection, nodes may
maintain hints as to the present location of a remote object. The global name table must be
consulted, however, if the hint becomes stale or is discarded to free up space.

In a fine-grain multicomputer, segment-based memory management is preferred to paging be-
cause fine-grain relocation and protection is required. The ability to compact all of memory
in a few milliseconds eliminates concerns over external fragmentation. Internal fragmentation
is an issue. Objects are small and must be protected and relocated individually. To support
fine-grain computation, a paging system would either have to have a very small page size (8
words), or sacrifice protection by packing unrelated objects into the same page.
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5.3 Task Management

To make use of a machine with tens of thousands of processing nodes one must divide the
problem at hand into many small tasks. A typical fine-grain task executes only 20 instructions
before exiting or suspending to await a message. Conventional operating systems are poorly
suited to manage such fine-grain tasks. They require thousands of instructions to create a task,
and hundreds of instructions to context switch between tasks.

JOSS provides a set of low-overhead task management services that efficiently support fine-grain
tasks. Using the hardware task scheduling and dispatching mechanisms of the MDP, creating
a task, suspending a task, resuming a task, and destroying a task each require fewer than
ten instructions. This inexpensive task management is provided without sacrificing protection.
Each task executes in its own addressing environment.

Context allocation is much faster than object allocation. Fixed size contexts are allocated off
a list of free contexts. After waiting for all pending replies, the context storage and name are
recycled by appending them to the list of free contexts. A strict request/reply protocol insures
that there are no dangling references to a recycled context name.

Low overhead task switching in JOSS depends on three features of the design. (1) The MDP
dispatch mechanism to eliminates scheduler overhead. (2) Contexts to hold the state of a task
are allocated quickly. (3) The small MDP register set limits the state to be saved on suspension
to five words.

5.4 Input/Output

No special support is provided in JOSS for input and output. I/O devices are considered to be
non-relocatable objects. These I/O objects respond to messages to transfer information in and
out of the system. I/O devices are protected by restricting distribution of their object names.
A disk object, for example, may be protected by allowing it to be referenced only through file
objects.

6 Conclusion

The J-Machine is a general purpose parallel computer. It provides general mechanisms for
communication, synchronization, and translation rather than hardwiring mechanisms for a
specific model of computation. These mechanisms efficiently support many proposed models
of computation. Using these mechanisms, the overhead of creating a task on a remote node is
reduced to a few microseconds. This low overhead permits concurrency to be exploited at a
fine-grain size.

The J-Machine provides a substrate on which actor systems can be built. Creating an actor on
a remote node, sending a message to an actor to request a service, and dispatching an actor to
execute a script in response to a message can all be performed with a few microseconds overhead.
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The global address space of the machine can be used to name actors and continuations.

The J-Machine is designed to make efficient use of silicon and wiring area. Each message
driven processing node is a jellybean part. It can be fabricated in the same technology used to
manufacture existing commodity semiconductor parts such as DRAMs. The network is designed
to make efficient use of wires so the machine can be packaged densely ~ with processing nodes
consuming most of the volume. There are no large wiring channels.

At the time of this writing (September 1988), the project is currently in the advanced design
stage. Message-level, instruction-level, and register transfer level simulators have been built to
test the J-Machine design. Prototype versions of JOSS and the CST compiler are operational.
Gate and transistor level schematics are in the process of being drawn. We expect to complete
the processing node chip design in late 1989 and have a prototype J-Machine System running
in mid 1990.
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